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Abstract

An inverse problem is solved for the estimation of upstream velocity profiles in an incompressible turbulent

boundary layer over a smooth flat plate. The inverse analysis is based on the boundary layer morphology, making use

of the law of the wall and the law of the wake to estimate boundary layer parameters from measured velocity histories.

The direct problem of the turbulent boundary layer equations is solved by using finite difference method with the

Cebeci–Smith turbulence model. The numerical solution of the direct problem is validated by experimental data ob-

tained through the hotwire anemometry in a low-speed wind tunnel. The friction velocity, Von K�aarm�aan constant, law of

the wall constant, Coles’s wake-strength parameter and boundary layer thickness for the initial profile are determined

as unknown parameters by the Levenberg–Marquardt algorithm. The estimated upstream velocity profiles compare

favourably with hotwire anemometry measurements at the same location.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Inverse problems have originated in the heat transfer

community in connection with the estimation of surface

heat flux histories from measured temperature histories

inside a heat conducting body. Inverse heat conduction

problems have been studied extensively for estimation of

unknown boundary or initial conditions, thermophysi-

cal properties, heat source strength, and geometrical

configuration [1–6]. A variety of numerical and analyt-

ical techniques have been developed for the solution of

inverse heat conduction problems, for example, the

function specification method, the Tikhonov regulari-

sation method, the mollification method, and the Alifa-

nov’s iterative regularisation method.
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Despite many potential applications, inverse heat

convection problems have only recently received some

attention. In convective environments, early studies were

carried out by Cebeci and coworkers [7–9] in connection

with the determination of the spatial variation of the

flow freestream velocity for a given local wall shear

stress. However, as recognised by Moutsouglou [10],

Cebeci and his coworkers failed to capture the ill-posed

nature of the problem as the calculated values of the

direct problem were used as boundary conditions for the

inverse problem. This procedure caused an unnecessary

contamination of the inverse problem that made its re-

sults difficult to assess. Moutsouglou [10] apparently was

the first to address an inverse convection problem, using

a sequential function specification algorithm for the es-

timation of the asymmetric heat flux in steady state

mixed convection in a vertical channel. The same author

has also applied the whole domain regularisation tech-

nique in an inverse analysis to estimate wall heat flux in

an elliptic laminar forced convection problem [11].
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Nomenclature

A law of the wall constant

cf skin-friction coefficient

D diagonal matrix

Fm difference between calculated and measured

velocities

J Jacobian matrix

M number of velocity measurement points

R squared residue

Rd2 Reynolds number based on the momentum

boundary layer thickness

u velocity component parallel to the plate

ue freestream velocity

um calculated velocity at a measurement point

us friction velocity

v velocity component normal to the plate

x spatial coordinate along the plate

y spatial coordinate normal to the plate

yþ dimensionless spatial coordinate normal to

the plate (¼ yus=m)
Zm measured velocity

Greek symbols

d boundary layer thickness

d2 momentum boundary layer thickness

j Von K�aarm�aan constant

k damping factor

� convergence criterion

m kinematic viscosity of fluid

P Cole’s wake-strength

Subscripts

0 inlet

k iteration index

n index of unknown parameter
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Inverse problems of laminar forced convection in

ducts have been studied for estimation of initial tem-

perature profile, wall heat flux and thermophysical

properties [12–28]. On the other hand, few works have

been published on inverse problems in turbulent flows

despite its obvious technological relevance. Liu and
€OOzis�ik [29] applied the conjugate gradient method with

an adjoint equation for solving an inverse turbulent

convection problem of estimating the timewise varying

wall heat flux in parallel plate ducts. Recently, Li and

Yan [30] solved an inverse problem for estimation of

space- and time-dependent heat flux in turbulent forced

convection between parallel flat plates, with the conju-

gate gradient method. Su et al. [31] applied the Leven-

berg–Marquardt method to estimate the nonuniform

wall heat flux in a steady state, thermally developing,

hydrodynamically developed turbulent flow in a circular

pipe based on temperature measurements obtained at

several different locations in the stream. Later, Su and

Silva Neto [32] solved an inverse heat convection prob-

lem to estimate simultaneously the inlet temperature

profile and the wall heat flux distribution in a steady

state, thermally developing, hydrodynamically devel-

oped turbulent flow in a circular pipe based on tem-

perature measurements obtained at several different

positions in the stream, using the Levenberg–Marquardt

method [33–35].

The purpose of the present work is to solve an inverse

problem for the estimation of upstream velocity profiles

for an incompressible turbulent boundary layer over a

smooth flat plate. The solution procedure aims at de-

veloping a method which can be used confidently to
predict local and global parameters of the flow. As re-

corded by Cebeci [9], ‘‘a slight error in the experimental

skin-friction coefficient will severely affect the computed

velocity distribution’’. Of course, the same remark is

valid if we consider the computed skin-friction coeffi-

cient. In fact, the solution sensitivity on the chosen value

of the skin-friction is known to be high for turbulent

flows and a classical way to overcome this difficulty is to

appeal to the asymptotic two-deck structure of the tur-

bulent boundary layer. Here, the unknown upstream

velocity profile will be represented by the composite

Coles’s law of the wall, law of the wake profile; then, the

friction velocity, Von K�aarm�aan’s constant, the law of

the wall constant, Coles’s wake-strength parameter and

the boundary layer thickness for the initial profile, which

will be determined as unknown parameters by using the

Levenberg–Marquardt algorithm. The solution proce-

dure will resort to velocity measurements obtained at

several different downstream locations in the stream; the

measurements were obtained through the hotwire ane-

mometry technique. The effects on solution concerning

the location of the measurement station are examined.

The direct problem, presented in the next section, is

solved by a finite difference method that uses the Cebeci–

Smith turbulence model.
2. Mathematical formulation of the direct problem

The Reynolds averaged equations for a steady, in-

compressible and two-dimensional turbulent boundary

layer can be written as follows:
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The notation is classical. The algebraic turbulence model

of Cebeci–Smith is used for the closure of the Reynolds

stress (see [36]).

The partial differential equations are to be solved

with the appropriate boundary conditions,

u ¼ 0 and v ¼ 0 for y ¼ 0; ð3Þ

u ¼ ueðxÞ as y ! 1; ð4Þ

u ¼ u0ðyÞ and v ¼ v0ðyÞ for x ¼ x0: ð5Þ

If the fluid properties, coefficients of turbulent mod-

elling, and boundary conditions are known, the direct

problem given by Eqs. (1)–(5) can be solved to obtain

the velocity field of the turbulent boundary layer. In this

work, the direct problem defined by Eqs. (1)–(5) is

solved through a second-order implicit finite difference

method [37].
3. Solution of the inverse problem

In the inverse problem considered in this work, we

are looking for an unknown upstream velocity profile

u0ðyÞ; this must be evaluated from velocity measure-

ments taken at several downstream points in the flow

field.

The unknown upstream velocity profile is represented

by the composite Coles’s law of the wall, law of the wake

formulation [38]

u0ðyÞ ¼ us
1

j
ln yþ

�
þ Aþ 2P

j
sin2 p

2

y
d

� ��
; ð6Þ

where j (Von K�aarm�aan constant), A (law of the wall

constant), us (friction velocity), P (Cole’s wake-

strength) and d (boundary layer thickness) are parame-

ters to be determined, and yþ ¼ yus=m.
Upon the parameterisation given by Eq. (6), the in-

verse problem has been formulated as a parameter es-

timation problem. The solution of this inverse problem

for the estimation of the five unknown parameters is

based on the minimisation of the ordinary least squares

norm defined by

Rð~PP Þ ¼
XM
m¼1

½umð~PP Þ � Zm�2; ð7Þ

where umð~PP Þ are the calculated velocities and Zm are the

measured velocities at points ðxm; ymÞ, m ¼ 1; 2; . . . ;M ,

with M being the total number of measurement points.
The vector of unknown parameters is formed by

~PPT ¼ ½p1; p2; p3; p4; p5� ¼ ½j;A; us;P; d�: ð8Þ

We use the Levenberg–Marquardt method [33–35] for

parameter estimation, written in matrix form

ðJTJ þ kDÞD~PP ¼ �JT~FF ; ð9Þ

where D represents the diagonal matrix, k is a damping

factor to improve the convergence behaviour and the

elements of the Jacobian matrix are

Jmn ¼
oum
opn

; m ¼ 1; 2; . . . ;M and n ¼ 1; . . . ; 5: ð10Þ

Eq. (9) is then written in a form convenient to be used

in an iterative procedure,

DPk ¼ �ðJkTJk þ kkDkÞ�1JkT~FF k ; ð11Þ

where k is the iteration index.

A new estimation of the parameters, ~PPkþ1, is calcu-

lated by

~PPkþ1 ¼ ~PPk þ D~PPk : ð12Þ

The iterative procedure starts with an initial guess for

parameters, ~PP 0, and new estimates, ~PPkþ1 are sequentially

obtained using Eq. (12) with D~PPk given by Eq. (11) until

the convergence criterion

Dpkn
pkn

����
���� < �; n ¼ 1; . . . ; 5 ð13Þ

is satisfied, where � is a small real number, such as 10�8.

The elements of the Jacobian matrix as well as the right

hand term of Eq. (9) are calculated by using the solution

of the direct problem defined by Eqs. (1)–(5), as de-

scribed in the previous section.
4. The classical approach

For the simple case of a turbulent flow over a flat

plate at zero incidence, approximate methods based on

the momentum integral equation can be easily derived

for the estimation of some flow parameters. In these

methods, the boundary layer thickness is approximated

by a suitable empirical equation; then, if the velocity

distribution is considered to follow a certain form, the

momentum equation can be integrated to provide a re-

lation between the displacement thickness, momentum

thickness and shear stress at the wall.

The assumption of a 1/7th power law of velocity

distribution advanced by Prandtl relied on the idea that

small differences in the velocity profile are not important

since the drag will be evaluated from an integral. Thus,

he considered that the velocity distribution in the

boundary layer on a plate is identical with that inside a

circular pipe.
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Hence, integration of the momentum equation from

the initial value d ¼ 0 at x ¼ 0 furnishes (see [39])

d2 ¼ 0:036x
U1x
m

� ��1=5

; ð14Þ

d ¼ 72

7
d2; ð15Þ

cf ¼ 0:0576
uex
m

; ð16Þ

us ¼ ue

ffiffiffiffi
cf
2

r
: ð17Þ

The above four equations together with the composite

law of the wall/law of the wake can now be used to

evaluate the velocity profile at any location from a given

velocity profile at any other location. The steps are the

following:

• From a given experimental velocity profile, calculate

d2.
• From Eq. (14), calculate the distance of the experi-

mental velocity profile to a virtual plate origin.

• From Eq. (14), calculate d2 for the unknown profile.

• From Eq. (15), calculate d for the unknown profile.

• From Eqs. (16) and (17), calculate us for the un-

known profile.

• From Eq. (6), construct the unknown velocity profile.

To implement Eq. (6) in the classical approach one

needs to know the values of parameters j, A and P.

Here, the following values were considered:

j ¼ 0:4; ð18Þ

A ¼ 5:0; ð19Þ

P ¼ �0:05757 ln2 Rd2 þ 1:062 lnRd2 � 4:317;

Rd2 < 5600; ð20Þ

P ¼ 0:55; Rd2 P 5600: ð21Þ
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Fig. 1. Validation of the numerical solution for the direct

problem. Comparison of calculated and measured velocity

profiles in inner variable.
5. Experimental apparatus and instrumentation

The experiments were carried out in a low-speed

wind tunnel located at the Laboratory of Turbulence

Mechanics of COPPE/UFRJ. The wind tunnel is of

open circuit type and has a 5 m long test section with

square cross section of 0.67 m�0.67 m. Wind speed

is continuously variable from 0.5 to 3.5 m/s. The tur-

bulent intensity level in the freestream was about 1.0%.

Mean velocity profiles and turbulent intensity levels

were measured by using a DANTEC series 55M hotwire

anemometer with a standard P15 probe. A Pitot tube, a

high precision inclined multi-tube manometer, and a

computer controlled traverse gear were also used. Out-
put signals of the hotwire anemometer were transmitted

to a PC through a 16-bit data acquisition card.

An uncertainty analysis of the data was performed

according to the procedure described in [40]. The un-

certainty associated with the velocity measurements was:

U ¼ 0:064 m/s precision, 0 bias (P ¼ 0:95).
Six longitudinal velocity profiles were measured at

stations 3.20, 3.25, 3.30, 3.35, 3.40 and 3.45 m from the

beginning of the test section. All profiles were measured

over the central line of the test section. Around 60 mean

velocity measurement points were taken for each profile.

The friction velocity (us), Coles’s wake-strength para-

meter (P), boundary layer thickness (d), Von K�aarm�aan
constant (j) and the law of the wall constant (A) for each
measured velocity profile were obtained through a pro-

gram specially developed in the Mathematicae software

package environment.
6. Results

The study was developed in three parts. The objective

of the first part was to validate the numerical solution

for the direct problem by comparison with some ex-

perimental data. The velocity profile measured at station

3.20 m was used as the initial condition for the calcu-

lation of velocity profiles at the same stations where the

measurements were performed. Fig. 1 shows a compar-

ison between velocity profiles obtained through the nu-

merical simulation and the experimental profiles at

station 3.45 m.

The second part aimed at estimating the upstream

velocity profile, at station x ¼ 3:20 m, by the inverse

method. We have carried out an analysis of the sensi-

tivity coefficients, before the estimation of the unknown

parameters. As the parameters involved in the inverse

problem have different orders of magnitude and di-

mension (k, A and P are dimensionless, d has unit of
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Fig. 3. Comparison of estimated initial velocity profile in inner

variable with experimental data using one measured at station

3.45 m.
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length and us unit of velocity), we chose to represent the

results with relative sensitivity coefficients, defined as

Jpn ¼ pn
ou
opn

: ð22Þ

Fig. 2 shows the results of the relative sensitivity

coefficients, determined by using finite difference ap-

proximation with central difference. The sensitivity co-

efficients of the parameters d and A presented small

magnitude. The dashed line represents the ratio between

the sensitivity coefficient of the parameter us and the

sensitivity coefficient of the parameter j. We can observe

that this ratio is close to the value )1 along all the

points, which shows that the sensitivity coefficients of

these two parameters presented nearly symmetrical dis-

tributions and are consequently linearly dependent.

The analysis of the sensitivity coefficients described

above shows that only the parameters us and P could be

estimated together. To overcome this difficulty, we de-

veloped a sequential method of parameter estimation by

which the five parameters were progressively estimated.

In this way, the unknown parameters us and P were

estimated first with the parameter d being the value of

the downstream experimental profile and the parameters

j and A the classical values described respectively in Eqs.

(18) and (19). The parameter j was estimated in the

next, with the values of the parameters us and P already

estimated, with the parameter d being the value of the

downstream experimental profile and the parameter A
the classical value. The parameter d was then estimated

with the values of the parameters us, P and j already

estimated, with the parameter A being the classical value.

Finally, the parameter A was estimated with the values

of the parameters us, P, j and d already estimated.

A single experimental profile at a downstream station

was used in the inverse analysis. We successfully esti-

mated the upstream velocity profile using measured
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Fig. 2. Relative sensitivity coefficients.
profiles at stations x ¼ 3:25, 3.35 and 3.45 m. These

profiles were then to be compared with the profile ob-

tained experimentally and by the classical approach. Fig.

3 shows that the estimated upstream velocity profile

agrees quite well with the measured upstream profile.

The 99% confidence interval for the estimated para-

meters was obtained from the diagonal elements of the

covariance matrix, ½JTJ ��1

nn , as follows (see [6]):

pn � 2:576r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½JTJ ��1

nn

q
6 Pn 6 pn

þ 2:576r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½JTJ ��1

nn

q
; n ¼ 1; . . . ; 5; ð23Þ

where P is the real value of the parameter and r is the

standard deviation of the measurement errors.

Table 1 presents the 99% confidence intervals for

some values of standard deviation of the measurement

errors, where ue ¼ 3:64 m/s is the freestream velocity

measured downstream at x ¼ 3:45 m. As the parameter

us presents a smaller diagonal element of the covariance

matrix, ½JTJ ��1

nn , than the other parameters, it is conse-

quently less influenced by the measurement errors; on

the contrary, more accurate measurements are necessary

for the estimation of the parameters P and A, due to

their larger diagonal element of the covariance matrix,

½JTJ ��1

nn .

In the third part, we checked the precision of the

numerical simulation of the turbulent boundary layer, as

a direct problem, if the estimated initial profile was used

as the initial condition. We used the estimated values of

parameters us, j, A, P and d to construct the initial

condition and compared the results with that obtained

by using the directly measured initial profile. Fig. 4

shows a comparison between the velocity profiles at

station 3.45 m when: (i) an inverse initial profile is used

as an initial condition, (ii) the classical approach is used

to find the initial condition.

The friction velocity is a flow parameter that is no-

toriously difficult to determine experimentally. In this



Table 1

Confidence intervals of parameter estimation

Parameter Value estimated

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½JTJ ��1

nn

q
r 99% confidence interval

us 0.153 0.013720 0.01ue 0:15176 us 6 0:1543

0.03ue 0:14916 us 6 0:1569

0.05ue 0:14666 us 6 0:1594

d 0.0637 0.044868 0.01ue 0:059496 d6 0:06791

0.03ue 0:051066 d6 0:07634

0.05ue 0:042646 d6 0:08476

A 4.964 1.1991 0.01ue 4:85146A6 5:0766

0.03ue 4:62636A6 5:3018

0.05ue 4:40126A6 5:5268

j 0.414 0.03478 0.01ue 0:41076j6 0:4173

0.03ue 0:40426j6 0:4238

0.05ue 0:39776j6 0:4303

P 0.600 1.0194 0.01ue 0:50436P6 0:6957

0.03ue 0:31296P6 0:8871

0.05ue 0:12156P6 1:0785
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Fig. 4. Calculated downstream velocity profiles using experi-

mental and estimated initial profiles; inner variables. Circles

denote experiments; line, initial profile given by inverse method;

dashed line, initial profile given by classical approach; ·, initial
profile given by experiments.

Table 2

Comparison of flow parameters at x ¼ 3:20 m

Parameter Experiments Inverse problem

(x ¼ 3:45 m)

Classical

approach

us (m/s) 0.160 0.153 0.162

d (m) 0.0728 0.0637 0.0753

A 5.247 4.964 5.00

j 0.420 0.414 0.410

P 0.495 0.600 0.445

3.25 3.30 3.35 3.40 3.45
0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

x (m)

cf

Fig. 5. Estimation of friction coefficient using one measured

station, 3.45 m. Circles denote experiments; line, inverse

method; dashed line, classical approach; ·, direct method.
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work, the friction velocity was determined by means of a

nonlinear regression program developed in the Mathe-

matica software package for treatment of the experi-

mental data.

Table 2, in addition, shows values of friction velocity

estimated by the inverse method compared with the

measured values of friction velocity at station x ¼ 3:20
m. As can be seen, the relative errors for us were less

than 5%. This is a clear indication that inverse analysis

can be used successfully to determine the friction ve-

locity from mean velocity measurements in the down-

stream flow field.

Figs. 5 and 6 show the predicted and measured values

of cf and of d2. The inverse method shows a clear ad-
vantage over the classical approach. In fact, for the

present conditions, the classical approach tends to un-

derestimate the values of d, and that results in higher

predicted values of cf .
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Fig. 6. Estimation of momentum thickness using one measured

station, 3.45 m. Circles denote experiments; line, inverse

method; dashed line, classical approach; ·, direct method.

W.M. Brasil et al. / International Journal of Heat and Mass Transfer 47 (2004) 1267–1274 1273
7. Conclusion

An inverse analysis for the estimation of upstream

velocity profiles in an incompressible turbulent bound-

ary layer over a smooth flat plate was carried out. The

turbulent boundary layer direct problem with an alge-

braic turbulence model was solved through a finite dif-

ference method, which was validated against data

obtained in a low-speed wind tunnel. The inverse

problem for the estimation of initial velocity profiles was

formulated as a parameter estimation problem that

searched for the friction velocity, the Von K�aarm�aan
constant, the law of the wall constant, the Coles’s wake-

strength parameter and the boundary layer thickness at

an upstream station in the turbulent boundary layer. We

have shown, through comparison with the measured

velocity profile at the same station, that the upstream

velocity profile can be accurately estimated if experi-

mental data of velocity measurement within 25 cm from

the inlet station are used. The proposed inverse analysis

can therefore be used to generate an accurate and

smooth initial velocity profile for numerical simulation

of turbulent boundary layer and to determine accurately

some boundary layer parameters, such as the friction

velocity and the boundary layer momentum thickness,

that are difficult to measure directly.

All the above results are very promising, which leads

us to believe that an extension of the present procedure

to the problem of turbulent boundary layers over rough

surfaces may be possible. In that case, a new parameter,

the error in origin, e, will have to be considered in our

analysis. Due to the great difficulties in experimentally

assessing e (see, e.g. [41]), inverse methods may, there-

fore, become a powerful tool for the description of flows

over rough surfaces. This issue will be addressed in the

future by the present authors.

Finally, it should be pointed out that the present

procedure can be easily extended so that the estimation

of upstream temperature profiles can be made from

measured temperature profiles.
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